
Smart Contract Interactions in Coq

Jakob Botsch Nielsen and Bas Spitters

Concordium Blockchain Research Center, Computer Science, Aarhus University

Abstract. We present a model/executable specification of smart con-
tract execution in Coq. Our formalization allows for inter-contract com-
munication and generalizes existing work by allowing modelling of both
depth-first execution blockchains (like Ethereum) and breadth-first exe-
cution blockchains (like Tezos). We represent smart contracts programs
in Coq’s functional language Gallina, enabling easier reasoning about
functional correctness of concrete contracts than other approaches. In
particular we develop a Congress contract in this style. This contract
– a simplified version of the infamous DAO – is interesting because of
its very dynamic communication pattern with other contracts. We give
a high-level partial specification of the Congress’s behavior, related to
reentrancy, and prove that the Congress satisfies it for all possible smart
contract execution orders.

1 Introduction

Since Ethereum, blockchains make a clear separation between the consensus
layer and the execution of smart contracts. In Ethereum’s Solidity language con-
tracts can arbitrarily call into other contracts as regular function calls. Modern
blockchains further separate the top layer in an execution layer and a contract
layer. The execution layer schedules the calls between the contracts and the con-
tract layer executes individual programs. The choice of execution order differs
between blockchains. For example, in Ethereum the execution is done in a syn-
chronous (or depth first) order: a call completes fully before the parent continues,
and the parent is able to observe its result. Tezos uses the breadth first order.

We provide1 a model/executable specification of the execution and contract
layer of a third generation blockchain in the Coq proof assistant. We use Coq’s
embedded functional language Gallina to model contracts and the execution
layer. This language can be extracted to certified programs in for example Haskell
or Ocaml. Coq’s expressive logic also allows us to write concise proofs. The
consensus protocol provides a consistent global state which we treat abstractly
in our formalization.

We work with an account-based model. We could also model the UTxO
model by converting a list of UTxO transactions to a list of account transac-
tions [Zah18]. Like that work, we do not model the cryptographic aspects, only
the accounting aspects: the transactions and contract calls.

1 https://gitlab.au.dk/concordium/smart-contract-interactions/tree/v1.0



2 Jakob Botsch Nielsen and Bas Spitters

This text is organized as follows: Section 2 describes the implementation of
the execution layer in Coq. In Section 3 we provide a simple principled specifica-
tion for the Congress. By using such specifications one avoids having to deal with
reentrancy bugs in a post-hoc way. Section 4 discusses related work. Section 5
concludes.

2 Implementation

2.1 Basic assumptions

Our goal is to model a realistic blockchain with smart contracts. To do so we
will require this blockchain to supply some basic operations that are to be used
both by smart contracts and when specifying our semantics. Our most basic
assumptions are captured as a typeclass:

Class ChainBase :=

{ Address : Type;

address_countable :> Countable Address;

address_is_contract : Address → bool;

... }.

Specifically we require a countable Address type with a clear separation between
addresses belonging to contracts and to users. While this separation is not pro-
vided in Ethereum its omission has led to exploits before2 and we thus view it as
realistic that future blockchains allow this. Other blockchains commonly provide
this by using some specific format for contract addresses, for example, Bitcoin
marks addresses with associated scripts using so-called pay-to-script-hash ad-
dresses which always start with 3.

Generally all semantics and smart contracts will be abstracted over an in-
stance of this type, so in the following sections we will assume we are given such
an instance.

2.2 Smart Contracts

We will consider a functional smart contract language. Instead of modelling the
language as an abstract syntax tree in Coq, as in [AS19], we model individual
smart contracts as records with (Coq) functions.

Local state. It is not immediately clear how to represent smart contracts by
functions. For one, smart contracts have local state that they should be able to
access and update during execution. In Solidity, the language typically used in
Ethereum, this state is mutable and can be changed at any point in time. It
is possible to accomplish something similar in pure languages, for example by
using a state monad which allows state to be updated at any point during a

2 See for instance https://www.reddit.com/r/ethereum/comments/916xni/how_to_

pwn_fomo3d_a_beginners_guide/



Smart Contract Interactions in Coq 3

function’s execution, but we do not take this approach. Instead we use a more
traditional functional approach where the contract takes as input its current
state, and returns a single new, updated state.

However, different contracts will typically have different types of states. A
crowdfunding contract may wish to store a map of backers in its state while an
auction contract would store information about ongoing auctions. To facilitate
this polymorphism we use an intermediate storage type called SerializedValue.
We define conversions between SerializedValue and primitive types like booleans
and integers plus derived types like pairs, sums and lists. Generally this allows
conversion from and to SerializedValue to be handled implicitly and mostly
transparently to the user.

Inter-contract communication. In addition to local state we also need some way
to handle inter-contract communication. In Solidity contracts can arbitrarily call
into other contracts as regular function calls. This would once again be possible
with a monadic style, for example by the use of a promise monad where the
contract would ask to be resumed after a call to another contract had finished.
To ease reasoning we choose a simpler approach where contracts return actions
that indicate how they would like to interact with the blockchain, allowing trans-
fers, contract calls and contract deployments only at the end of execution. The
blockchain will then be responsible for scheduling these actions in its execution
layer.

With this design we get a clear separation between contracts and their in-
teraction with the chain. That such separations are important has been realized
before, for instance in the design of Michelson and Scilla [SKH18a]. Indeed, a
”tail-call” approach like this forces the programmer to update the contract’s
internal state before making calls to other contracts, mitigating by construction
reentrancy issues such as the infamous DAO exploit.

Thus, contracts will take their local state and some data allowing them to
query the blockchain. As a result they then optionally return the new state
and some operations (such as calls to other contract) allowing inter-contract
communication. Overall, this design is very similar to the Tezos blockchain where
contracts are written in Michelson which follows a similar approach.

The Ethereum model may be compared to object-oriented programming. Our
model is similar to the actor model, as contracts do not read or write the state
of another contract directly, but instead communicate via messages. One finds
similar models in Liquidity and in Scilla, which is based on IO-automata.

The contract’s view. Smart contracts are typically allowed to query various
data about the blockchain during execution, such as the current block height.
Normally this is provided as special instructions. For instance, this is the case
in EVM bytecode used for Ethereum. Since we use a shallow embedding we will
instead pass this as an additional argument to the contract. In our framework,
we give contracts the following view of the blockchain:

Definition Amount := Z.



4 Jakob Botsch Nielsen and Bas Spitters

Record Chain :=

{ chain_height : nat;

current_slot : nat;

finalized_height : nat;

account_balance : Address → Amount; }.

We allow contracts to access basic details about the blockchain, like the
current chain height, slot number and the finalized height. The slot number is
meant to be used to track the progression of time; in each slot, a block can
be created, but it does not have to be. The finalized height allows contracts
to track the current status of the finalization layer available in for example
the Concordium blockchain [MMNT19]. This height is different from the chain
height in that it guarantees that blocks before it will not be changed. We finally
also allow the contract to access balances of accounts, as is common from other
blockchains.

The contract. The final piece of information provided to contracts when they
are executed is information about the call. Overall, we thus represent contracts
using the following types:

Record ContractCallContext :=

{ ctx_from : Address;

ctx_contract_address : Address;

ctx_amount : Amount; }.

Inductive ActionBody :=

| act_transfer (to : Address) (amount : Amount)

| act_call (to : Address) (amount : Amount)

(msg : SerializedValue)

| act_deploy (amount : Amount) (c : WeakContract)

(setup : SerializedValue)

with WeakContract :=

| build_weak_contract

(init : Chain → ContractCallContext →
SerializedValue (* setup *) →
option SerializedValue)

(receive : Chain → ContractCallContext →
SerializedValue (* state *) →
option SerializedValue (* message *) →
option (SerializedValue * list ActionBody)).

Here the ContractCallContext type represents information that is common
to when the contract executed due to deployment or due to receiving a mes-
sage. It contains the source address (ctx_from), the contract’s own address
(ctx_contract_address) and the amount of money transferred (ctx_amount). The
ActionBody type represents operations that interact with the chain. It allows for
simple messageless transfers (act_transfer), calls with messages (act_call), and
deployment of new contracts (act_deploy). These do not contain a source address
to model that while contracts can interact with the blockchain, they do not get
to specify the source (which is their own address) when they do so. Finally, a



Smart Contract Interactions in Coq 5

contract is two functions. The init function is used when a contract is deployed
to set up its initial state, while the receive function will be used for transfers
and calls with messages afterwards. They both return option types, allowing the
contract to signal invalid calls or deployments. The receive function additionally
returns a list of ActionBody that it wants to be performed in the chain after, as
we described above. Later, we will also use a representation where there is a
source address; we call this type Action:

Record Action :=

{ act_from : Address;

act_body : ActionBody; }.

This type might resemble what is normally called a transaction, but we make
a distinction between the two. An Action is an unevaluated operation that,
when executed by an implementation, affects the blockchain’s state. Particularly,
compared to a transaction it is underrepresented in that act_deploy does not
contain the address of the contract to be deployed. This models that it is the
implementation that picks the address of a newly deployed contract, not the
contract making the deployment. We will later describe our ActionEvaluation

type which captures more in depth the choices made by the implementation
while executing an action.

The functions of contracts may seem peculiar in that they are typed using
SerializedValue parameters. This is also the reason for the name WeakContract.
Generally this makes specifying semantics simpler, since the semantics can deal
with contracts in a generic way. However, for users of the framework writing
concrete contracts this form of ”string-typing” makes things harder. For this
reason we provide a dual notion of a strong contract, which is a polymorphic
version of contracts generalized over the setup, state and message types. Users
of the framework will only need to be aware of this notion of contract, which
does not contain references to SerializedValue at all.

One could also imagine an alternative representation using a dependent
record of setup, state and message types plus functions over those types. How-
ever, such a representation makes it nearly impossible for contracts to interact
with other contracts since they will somehow need to prove that the messages
they are sending are of the types stored in this record. In particular this is diffi-
cult when the blockchain has no knowledge about individual contracts and only
works generically with them.

2.3 Semantics

Next we wish to specify the semantics of the execution layer.

Environments. The Chain type given above is merely the contract’s view of the
blockchain and does not store enough information to allow the blockchain to
run actions. More specifically we need to be able to look up information about
currently deployed contracts like their functions and state. We augment the Chain

type with this information and call it an Environment:



6 Jakob Botsch Nielsen and Bas Spitters

Record Environment :=

{ env_chain :> Chain;

env_contracts : Address → option WeakContract;

env_contract_states :

Address → option SerializedValue; }.

It is not hard to define functions that allow us to make updates to environ-
ments. For instance, inserting a new contract is done by creating a new function
that checks if the address matches and otherwise uses the old map. In other words
we use simple linear maps in the semantics. In similar ways we can update the
rest of the fields of the Environment record.

Evaluation of actions. When contracts return actions the execution layer will
somehow need to evaluate the effects of these actions. We define this as a ”proof-
relevant” relation ActionEvaluation in Coq:

ActionEvaluation : Environment → Action →
Environment → list Action → Type

This relation captures the requirements and effects of executing the action
in the environment. It is ”proof-relevant”, meaning that it can be inspected,
which is useful since actions by themselves are underspecified. For example, a
contract can return an action that deploys a new contract; in this case we leave
it up to the implementation to pick an appropriate address for the new contract.
However, when reasoning about action evaluation it is useful to know which
address a contract was deployed to and this information can be retrieved by
inspecting the evaluation.

We define the relation by three cases: one for transfers of money, one for
deployment of new contracts, and one for calls to existing contracts. To exemplify
this relation we give its formal details for the simple transfer case below:

| eval_transfer :

forall {pre : Environment}

{act : Action}

{new_env : Environment}

(from to : Address)

(amount : Amount),

amount ≤ account_balance pre from →
address_is_contract to = false →
act_from act = from →
act_body act = act_transfer to amount →
EnvironmentEquiv

new_env

(transfer_balance from to amount pre) →
ActionEvaluation pre act new_env []

In this case the sender must have enough money and the recipient cannot
be a contract. When this is the case a transfer action and the old environment
evaluate to the new environment where the account_balance has been updated
appropriately. Finally, such a transfer does not result in more actions to execute



Smart Contract Interactions in Coq 7

since it is not associated with execution of contracts. Note that we close the
evaluation relation under extensional equality (EnvironmentEquiv).

We denote this relation by the notation 〈σ, a〉 ⇓ (σ′, l). The intuitive under-
standing of this notation is that evaluating the action a in environment σ results
in a new environment σ′ and new actions to execute l.

Chain traces. The Environment type captures enough information to evaluate
actions. We further augment this type to keep track of the queue of actions
to execute. In languages like Solidity this data is encoded implicitly in the call
stack, but since interactions with the blockchain are explicit in our framework
we keep track of it explicitly in the ChainState type.

Record ChainState :=

{ chain_state_env :> Environment;

chain_state_queue : list Action; }.

We are now ready to define what it means for the chain to take a step.
Formally, this is defined as a ”proof-relevant” relation ChainStep:

ChainStep : ChainState → ChainState → Type

We denote this relation with the notation (σ, l) → (σ′, l′), meaning that we
can step from the environment σ and list of actions l to the environment σ′ and
list of actions l′. We give this relation as simplified inference rules below.

step-block
b valid in σ acts from users

(σ, []) → (add block b σ, acts)

step-action
〈σ, a〉 ⇓ (σ′, l)

(σ, a :: l′) → (σ′, l ++ l′)

step-permute
Perm(l, l′)

(σ, l) → (σ, l′)

The step-block rule allows the addition of a new block with associated
actions. This is the only way to add new actions into a trace when the queue is
empty. We require that the block information (b in the rule) is valid in the current
environment (the b valid in σ premise), meaning that it needs to satisfy some
well-formedness conditions. For example, if the chain currently has height n, the
next block added needs to have height n + 1. There are other well-formedness
conditions on other fields, such as the finalized height, but we omit them here for
brevity. Another condition is that all added actions must come from users (the
acts from users premise). This models the real world where transactions added
in blocks are ”root transactions” from users, and carrying out these transactions
might cause contracts to generate new transactions. In our model this condition is
crucial to ensure that transfers from contracts can happen only due to execution
of their associated code. When the premises are met we update information
about the current block (such as the current height and the balance of the
creator, signified by the add block function) and update that the queue now
contains the actions that were added.

The step-action rule allows the evaluation of the action in the beginning of
the queue, replacing it with the resulting new actions to execute. This new list (l
in the rule) is concatenated at the beginning, corresponding to using the queue



8 Jakob Botsch Nielsen and Bas Spitters

as a stack. This results in a depth-first execution order of actions. The step-
permute rule allows an implementation to use a different order of reduction
by permuting the queue at any time. For example, it is possible to obtain a
breadth-first order of execution by permuting the queue so that newly added
events are in the back. In this case the queue will be used like an actual FIFO
queue.

Building upon steps we can further define traces as the proof-relevant re-
flexive transitive closure of the step relation. In other words, this is a sequence
of steps where each step starts in the state that the previous step ended in.
Intuitively the existence of a trace between two states means that there is a se-
mantically correct way to go between those states. If we let ε denote the empty
environment with no queue this allows us to define a concept of reachability.
Formally we say a state (σ, l) is reachable if there exists a trace starting in ε and
ending in (σ, l). In Coq we define this as

Definition reachable (state : ChainState) : Prop :=

inhabited (ChainTrace empty_state state).

Generally, only reachable states are interesting to consider and most proofs
are by induction over the trace to a reachable state.

2.4 Building blockchains

We connect our semantics to an executable definition of a blockchain with a
typeclass in Coq:

Class ChainBuilderType := {

builder_type : Type;

builder_initial : builder_type;

builder_env : builder_type → Environment;

builder_add_block

(builder : builder_type)

(header : BlockHeader)

(actions : list Action) :

option builder_type;

builder_trace (builder : builder_type) :

ChainTrace empty_state

(build_chain_state (builder_env builder) []);}.

A chain builder is a dependent record consisting of an implementation type
(builder_type) and several fields using this type. It must provide an initial
builder, which typically would be an empty chain, or a chain containing just
a genesis block. It must also be convertible to an environment allowing to query
various information about the state. Furthermore, it must define a function that
allows addition of new blocks. Finally, the implementation needs to be able to
give a trace showing that the current environment is reachable with no more ac-



Smart Contract Interactions in Coq 9

tions left in the queue to execute. This trace captures a definition of soundness,
since it means that the state of such a chain builder will always be reachable3.

Instantiations. A priori it is not a guarantee that the semantics we have defined
are reasonable. More formally it is possible that ChainBuilderType is uninhabited
which makes proving properties based on it uninteresting. Thus, as a sanity
check, we implement two instances of this typeclass. Both of our implementations
are based on finite maps from the std++ library used by Iris [JKJ+18] and
are thus relatively efficient compared to the linear maps used to specify the
semantics. The difference in the implementations lies in their execution model:
one implementation uses a depth-first execution order, while the other uses a
breadth-first execution order. The former execution model is similar to the EVM
while the latter is similar to Tezos.

These implementations are useful as sanity checks but they also serve other
useful purposes in the framework. Since they are executable they can be used
to test concrete contracts that have been written in Coq. This involves writing
the contracts and executing them using Coq’s Compute vernacular. In addition,
they can also be used to give counter-examples to properties. In the next section
we will introduce the Congress contract, and we have used the depth-first im-
plementation of our semantics to formally show that this contract with a small
change is vulnerable to reentrancy.

3 Case: Congress – a simplified DAO

In this section we will present a case study of implementing and partially speci-
fying a complex contract in our framework.

3.1 The Congress contract

Wang [Wan18] gives a list of eight interesting Ethereum contracts. One of these
is the so-called Congress in which members of the contract vote on proposals.
Proposals contain transactions that, if the proposal succeeds, are sent out by the
Congress. These transactions are typically monetary amounts sent out to some
address, but they can also be arbitrary calls to any other contract.

We pick the Congress contract because of its complex dynamic interaction
pattern with the blockchain and because of its similarity to the infamous DAO
contract that was deployed on the Ethereum blockchain and which was eventu-
ally hacked by a clever attacker exploiting reentrancy in the EVM.

The Congress can be seen as the core of the DAO contract, with the DAO
implementing various additional mechanisms on top of voting for proposals. For
example, proposals can be seen as investments into other projects, and the DAO
contract kept track of the voters on each proposal to be able to pay back rewards
to these people in case the project turned out successful.

3 We do not currently include a notion of completeness. For instance, it is possible to
define a trivial chain builder that just ignores the blocks and actions to be added.



10 Jakob Botsch Nielsen and Bas Spitters

We implement the logic of the Congress in roughly 150 lines of Gallina code.
The type of messages accepted by the Congress can be thought of as its interface
since this is how actors on the blockchain can interact with it. For the Congress
we define the following messages:

Inductive Msg :=

| transfer_ownership : Address → Msg

| change_rules : Rules → Msg

| add_member : Address → Msg

| remove_member : Address → Msg

| create_proposal : list CongressAction → Msg

| vote_for_proposal : ProposalId → Msg

| vote_against_proposal : ProposalId → Msg

| retract_vote : ProposalId → Msg

| finish_proposal : ProposalId → Msg.

The Congress has an owner who is responsible for managing the rules of the
congress and the member list. By default, we set this to be the creator of the
congress. The owner can transfer his ownership away with the transfer_ownership

message. For example, it is possible to make the Congress its own owner, in
which case all rule changes and modifications to the member list must happen
through proposals (essentially making the Congress a democracy).

Anyone can use the create_proposal and finish_proposal messages. We allow
proposals to contain any number of actions to send out, though we restrict the
actions to only transfers and contract calls (i.e. no contract deployments). This
restriction is necessary because this would require the state of the Congress to
contain the contracts to deploy. Since contracts are functions in our shallow
embedding this would require storing higher order state which we do not allow
in the framework. This is a downside to the shallow embedding – with a deep
embedding like [AS19], the code could be stored as an AST or bytes.

While proposals can be finished by anyone they must first have been debated
for some period specified in the rules of the congress. During this period, mem-
bers of the congress have the ability to vote for or against the proposal. After
the debating period is over the proposal can be finished and the Congress will
remove it from its internal storage and send out its actions in case it passed.
The conditions for passing are once again specified in the rules, which contain
values such as the margin of yes-votes required.

3.2 A partial specification

The vulnerability of the DAO was in reward payout code in which a specially
crafted contract could reenter the DAO causing it to perform actions an unin-
tended number of times. Specifically, the attacker was able to propose a so-called
split and have the original DAO transfer a disproportionate amount of money to
a new DAO contract under his control. The Congress does not contain similar
code, but the same kind of bug would be possible in code responsible for carrying
out proposals.



Smart Contract Interactions in Coq 11

Previous research has focused on defining this kind of reentrancy formally
which we could also define and prove in our framework. Such (hyper-)properties
are interesting, but they also rely heavily on the benefit of hindsight and their
statements are complex and hard to understand. Instead we would like to come
up with a natural specification pertaining to the Congress that a programmer
could reasonably have come up with, even without knowledge of reentrancy. Our
goal with this is to apply the framework in a very concrete setting.

The specification we give is based on the following observation: any transac-
tion sent out by the congress should correspond to an action that was previously
created with a create_proposal message. This is a temporal property because
it says something about the past whenever an outgoing transaction is observed.
Temporal logic is not natively supported by Coq, so this would require some
work. Therefore we prefer a similar but simpler property: the number of actions
in previous create_proposal messages is always greater than or equal to the total
number of transactions the congress has sent out. This is not a full specification
of the behavior of the Congress but proving this property can help increase trust
that the congress is not vulnerable to reentrancy. With such a proof, any bug ex-
ploiting the Congress in a similar way to the DAO would somehow require a new
proposal to be created for each time the exploit was carried out. In particular,
the result would not have been provable in the original DAO contract because
of the reentrancy exploit. Our main result about the congress is a formal proof
that this always holds after adding a block:

Corollary congress_txs_after_block

{ChainBuilder : ChainBuilderType}

prev creator header acts new :

builder_add_block prev creator header acts = Some new →
forall addr,

env_contracts new addr =

Some (Congress.contract : WeakContract) →
length (outgoing_txs (builder_trace new) addr) ≤
num_acts_created_in_proposals

(incoming_txs (builder_trace new) addr).

This result states that, after adding a block, any address at which a Congress
contract is deployed satisfies the property previously described. Here the function
num_acts_created_in_proposals looks at all previous create_proposal messages
and sums the number of actions in them. The incoming_txs and outgoing_txs

functions are general functions that finds transactions (evaluation of actions) in
a trace. In this sense the property treats the contract as a black box, stating
only things about the transactions that has been observed on the blockchain.

We prove this property by generalizing it and proving something stronger.
Specifically, instead of stating the invariant over just the transactions and pro-
posals we state it over the following data:

– The internal state of the contract; more specifically, the current number of
actions in proposals stored in the internal state.

– The number of transactions sent out by the Congress, as before.



12 Jakob Botsch Nielsen and Bas Spitters

– The number of actions in the queue where the Congress is the source.

– The number of actions created in proposals, as before.

The key observations being that

1. When a proposal is created, the number of actions created in proposals goes
up, but so does the number of actions in the internal state of the Congress.

2. When a proposal is finished, the number of actions in the internal state goes
down, but the number of actions in the queue goes up accordingly (assum-
ing the proposal was voted for). In other words, actions ”move” from the
Congress’s internal state to the queue.

3. When an outgoing transaction appears on the chain it is because an action
moved out of the queue.

Especially observation 3 is interesting. It allows us to connect the evaluation of
a contract in the past to its resulting transactions on the chain, even though
these steps can be separated by many unrelated steps in the trace.

The proof of the stronger statement is straightforward by inducting over the
trace and showing that it always holds. When deploying the Congress we need
to establish the invariant which boils down to proving functional correctness of
the init function and the usage of some results that hold for contracts which
have just been deployed (for instance, such contracts have not made any out-
going transactions). On calls to the Congress the invariant needs to be reestab-
lished, which boils down to proving functional correctness of the receive func-
tion. Crucially, we can reestablish the invariant because the implementation of
the Congress clears out proposals from its state before the actions in the pro-
posal are evaluated (the DAO was vulnerable because it neglected to do this on
splits). Once we have established this stronger statement the result easily follows
as a direct corollary.

4 Related work

Both Simplicity [O’C17] and Scilla [SKH18a] are smart contract languages with
an embedding in Coq. Temporal properties of several smart contracts have been
verified in Scilla [SKH18b], although our congress contract is more complex than
the contracts described in that paper. We are unaware of an implementation of
such a contract in Scilla. Scilla, as an intermediate language which includes
both a functional part and contract calls, uses a CPS translation to ensure that
every call to another contract is done as the last instruction. In our model, the
high-level language and the execution layer are strictly separated.

The formalization of the EVM in F* [GMS18] can be extracted and used to
run EVM tests to show that it is a faithful model of the EVM. However, they do
not prove properties of any concrete contracts. Instead they consider classes of
bugs in smart contracts and try to define general properties that prevent these.
One of these properties, call integrity, is motivated by the DAO and attempts
to capture reentrancy. Intuitively a contract satisfies call integrity if the calls
it makes cannot be affected by code of other contracts. VerX [PDT+19] uses



Smart Contract Interactions in Coq 13

temporal logic and model checking to check a similar property. Such statements
are not hard to state in our framework given Coq’s expressive logic, and it seems
this would be an appropriate property to verify for the Congress. Unfortunately
even a correct Congress does not satisfy this property, since it is possible for
called contracts to finish proposals which can cause the Congress to perform
calls. This property could potentially be proven in a version of the Congress
that only allowed proposals to be finished by humans, and not by contracts.

5 Conclusion and future work

We have formalized the execution model of blockchains in Coq and used our
formalization to prove formally a result about a concrete contract. Our formal-
ization of blockchain semantics is flexible in that it accounts both for depth-first
and breadth-first execution order, generalizing existing blockchains and previ-
ous work, while remaining expressive enough to allow us to prove results about
complex contracts. We showed for a Congress – a simplified version of the DAO,
which still has a complex dynamic interaction pattern – that it will never send
out more transactions than have been created in proposals. This is a natural
property that aids in increasing trust that this contract is not vulnerable to
reentrancy like the DAO.

More smart contracts are available in Wang’s PhD thesis [Wan18] and spec-
ifying these to gain experience with using the framework will help uncover how
the framework itself should be improved. In this area it is also interesting to con-
sider more automatic methods to make proving more productive. For example,
temporal logics like LTL or CTL can be useful to specify properties on traces
and model checking these can be automated; see e.g. [PDT+19].

Finally, while our current framework is inspired by and generalizes existing
blockchains, there is still more work to be done to get closer to practical imple-
mentations. Gas is notoriously difficult to deal with in our shallow embedding
because tracking costs of operations can not be done automatically, but monadic
approaches have been used for similar purposes before [MFN+18]. To deal with
this problem we plan to connect our shallow embedding with a deep embedding
of the language Oak as described in [AS19], which will also allow proving proper-
ties about Oak contracts in our framework. In the other direction it is interesting
to consider extraction of our contracts into other languages like Liquidity, Oak
or Solidity. This is more directly applicable to current practice.

Acknowledgements We would like to thank the Oak team for stimulating discus-
sions.

References

[AS19] Danil Annenkov and Bas Spitters. Deep and shallow embeddings in Coq.
TYPES, 2019.



14 Jakob Botsch Nielsen and Bas Spitters

[GMS18] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic
framework for the security analysis of ethereum smart contracts. In PoST,
pages 243–269. Springer, 2018.

[JKJ+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular foun-
dation for higher-order concurrent separation logic. Journal of Functional
Programming, 28, 2018.

[MFN+18] Jay McCarthy, Burke Fetscher, Max S New, Daniel Feltey, and
Robert Bruce Findler. A Coq library for internal verification of running-
times. Science of Computer Programming, 164:49–65, 2018.

[MMNT19] Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi.
Afgjort – a semi-synchronous finality layer for blockchains. Cryptology
ePrint 2019/504, 2019. https://eprint.iacr.org/2019/504.

[O’C17] Russell O’Connor. Simplicity: A new language for blockchains.
CoRR/1711.03028, 2017.

[PDT+19] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
Security and Privacy 2020, 2019.

[SKH18a] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract
intermediate-level language. arXiv:1801.00687, 2018.

[SKH18b] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Temporal properties of
smart contracts. In Tiziana Margaria and Bernhard Steffen, editors, Lever-
aging Applications of Formal Methods, Verification and Validation. Indus-
trial Practice, pages 323–338. Springer, 2018.

[Wan18] Peng Wang. Type System for Resource Bounds with Type-Preserving Com-
pilation. PhD thesis, MIT, 2018.

[Zah18] Joachim Zahnentferner. Chimeric ledgers: Translating and unifying utxo-
based and account-based cryptocurrencies. Cryptology ePrint 2018/262,
2018. https://eprint.iacr.org/2018/262.


